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ABSTRACT

Surface wind speeds retrieved from airborne stepped frequency microwave radiometer (SFMR) brightness

temperature measurements are important for estimating hurricane intensity. The SFMR performance is highly

reliable at hurricane-force wind speeds, but accuracy is found to degrade at weaker wind speeds, particularly in

heavy precipitation. Specifically, a significant overestimation of surfacewind speeds is found in these conditions,

suggesting inaccurate accounting for the impact of rain on the measured microwave brightness temperature. In

this study, the wind speed bias is quantified over a broad range of operationally computed wind speeds and rain

rates, based on a large sample of collocated SFMRwind retrievals and global positioning systemdropwindsonde

surface-adjusted wind speeds. The retrieval bias is addressed by developing a new SFMR C-band relationship

between microwave absorption and rain rate (k2R) from National Oceanic and Atmospheric Administration

WP-3D aircraft tail Doppler radar reflectivity and in situ Droplet Measurement Technologies Precipitation

Imaging Probe measurements to more accurately model precipitation impacts. Absorption is found to be

a factor of 2 weaker than is estimated by the currently operational algorithm. With this new k–R relationship,

surface wind retrieval bias is significantly reduced in the presence of rain at wind speeds weaker than hurricane

force. At wind speeds greater than hurricane force where little bias exists, no significant change is found.

Furthermore, maximum rain rates computed using the revised algorithm are around 50% greater than opera-

tional measurements, which is more consistent with maximum reflectivity-estimated rain rates in hurricanes.

1. Introduction

Aircraft reconnaissance and research missions are

designed to observe a tropical cyclone (TC) to obtain the

best representation of various storm-dependent features,

including the surfacewind speed (Gray et al. 1991;Aberson

et al. 2006; Rogers et al. 2006, 2013). A fairly recent de-

velopment for obtaining surface windmeasurements is the

installation of stepped frequency microwave radiometers

(SFMRs; Uhlhorn and Black 2003; Uhlhorn et al. 2007)

on all U.S. Air Force Reserve Command (AFRC) and

National Oceanic and Atmospheric Administration

(NOAA) hurricane-penetrating aircraft. The SFMR

measures brightness temperatures (Tb) of the ocean sur-

face and atmosphere at six C-band microwave channels

(Swift et al. 1984), and an inversion algorithm is used to

retrieve wind speed. When viewed at nadir, the apparent

sea surface Tb generally increases with surface foam

coverage due to wave breaking (Nordberg et al. 1971;

Rosenkranz and Staelin 1972). Since the increase in foam

is correlated with surface wind speed (Ross and Cardone

1974; Webster et al. 1976; Swift et al. 1984; Tanner et al.

1987), Tb increases with surface wind speed (Usfc). Fur-

thermore, theTb (or alternatively, the surface emissivity «)

sensitivity towind speed is greatest at hurricane-forcewind

speeds (10mUsfc . 33ms21) and is therefore particularly

useful for measuring the strongest winds. However, sen-

sitivity is high enough to overcome instrument noise lim-

itations at surface wind speeds . 5ms21.

At C band, microwave frequencies are far enough re-

moved from the 22-GHzwater vapor and 60-GHz oxygen
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absorption bands that the intervening atmosphere is rel-

atively transparent (Smith 1982). Also, radiative extinc-

tion by clouds is reasonably negligible below ;10GHz

(Tsang et al. 1977). However, large raindrops that are

characteristic of tropical convective precipitation are

a measureable absorber of radiation at C-band frequen-

cies for rain rates exceeding ;3mmh21 (Olsen et al.

1978). Precipitation generally results in an increase in the

observedTb. In contrast to theTb versusUsfc dependence,

which is only weakly dependent on the microwave fre-

quencies used, the Tb (or, rain absorption coefficient) has

a much stronger dependence on frequency in the pres-

ence of rain. Thus, multiple Tb observations at closely

spaced frequencies are needed to retrieve the wind speed

under all conditions expected in hurricanes.

The current operational version of the SFMR « versus

Usfc model function was developed mainly from obser-

vations in mature hurricanes primarily to measure the

maximum wind as it pertains to estimating a storm’s in-

tensity (Uhlhorn et al. 2007). Therefore, general applica-

tion to all tropical systems was not, until now, thoroughly

tested, especially for wind speeds weaker than hurricane

force. This has important operational implications for

forecasters making decisions on system classifications, for

example, when to declare that a tropical storm has in-

tensified to hurricane status. Additionally, the installation

of SFMRs on all AFRCWC-130J reconnaissance aircraft

beginning in 2008 has resulted in a greatly expanded op-

erational role for observing surface wind speeds of tropi-

cal disturbances at all stages of development. With the

large increase in available observations, it became ap-

parent that in certain conditions, particularly at weak-to-

moderate wind speeds coupled with heavy precipitation,

the SFMR-retrieved wind speed was typically higher than

expected. To address this issue, a proposed Joint Hurri-

cane Testbed (JHT; Rappaport et al. 2012; Ralph et al.

2013) project was funded in order 1) to quantify the ap-

parent SFMR surface wind speed (high) bias over the full

range of wind speeds and rain rates expected in tropical

disturbances (from depressions through hurricanes); and

2) to analyze the currently implemented retrieval algo-

rithm for accuracy; and 3) to recommend improvements

for real-time operations, if necessary.

Calculating the SFMR microwave radiative energy

budget mainly consists of properly accounting for two

primary contributions to the observed Tb: the radiative

emission by the sea surface and the radiative absorption

by rain. To develop the currently operational « versusUsfc

function, the contribution by rain to the Tb was assumed

to be known. A model for the absorption coefficient de-

pendence on rain ratewas developed fromhistorical radar

reflectivity observations (Atlas and Ulbrich 1977; Olsen

et al. 1978; Jorgensen and Willis 1982, hereinafter JW82),

but its impact on surface wind accuracy was not specif-

ically examined, which was partially due to limited data

sample size. Jiang et al. (2006) evaluated SFMR-derived

rain rates as compared to other remote sensing–based

precipitation measurements for a small sample from

Hurricanes Bonnie (1998) and Humberto (2001) and

found that the SFMR tended to underestimate high rain

rates and overestimate low rain rates. Recently, Walsh

et al. (2014) compared SFMR rain rates with both

Wide-Swath Scanning Radar Altimeter (WSRA) radar

attenuation–derived and Next-Generation Weather

Radar (NEXRAD) reflectivity-derived rain-rate data

and essentially arrived at the same conclusion. Each of

these studies suggests a need to examine the SFMR rain

absorption function and its potential to degrade both

surface wind speed and rain-rate retrieval accuracies.

The primary goal of this work is to demonstrate that

improvements to SFMRTC surface wind speed retrieval

quality will be possible by implementing a revised cou-

pled wind–rain geophysical model function (GMF) that

more accurately accounts for the microwave contribu-

tion from rain than does the current operational version.

A comprehensive set of airborne data consisting of

independent, in situ surface wind observations and

precipitation measurements in hurricanes is used to re-

derive a set of model coefficients resulting in a more

consistent microwave radiation budget and ultimately,

more accurate wind speed measurements in all condi-

tions. In addition, rain-rate retrieval accuracy is im-

proved by virtue of the coupling.

This paper is organized as follows: in section 2, data

used to both assess the wind speed bias and to derive

a new set of model function coefficients are described.

The wind speed bias over the full range of expected winds

and rain rates is evaluated in section 3. Section 4 describes

the methodology for developing the new model function,

and section 5 contains an evaluation of surfacewind speeds

and rain rates using the revised algorithm relative to the

measurements computed for operations. Finally, section 6

presents a summary and some concluding remarks.

2. Data

a. SFMR

SFMRdata are obtained from nearly 170NOAAWP-

3D aircraft missions between 1999 and 2012 and from

over 200 AFRC WC-130J missions from 2010 to 2012,

including flights during the 2010 Impact of Typhoons on

the Ocean in the Pacific (ITOP) field experiment

(D’Asaro et al. 2014). All SFMR-retrieved surface wind

speeds and rain rates have been reprocessed using the

operationally implemented algorithm (Uhlhorn et al.

2007) and are low-pass filtered to 10-s average values,
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intended to represent a 1-min mean at a fixed location

(Powell et al. 1991; Uhlhorn and Nolan 2012). Data are

flagged as invalid if the input Tb values are found to be

noisy, as indicated by the root-mean-square error

(RMSE) of the forward geophysical model fit to the Tb

observations. A similar quality-control procedure is also

implemented for real-time operations.

b. GPS dropwindsondes

Global positioning system (GPS) dropwindsonde

(hereinafter ‘‘dropsonde’’; Hock and Franklin 1999)Usfc

are used to develop the operational SFMR emissivity

versus Usfc GMF by correlating collocated observations

(Uhlhorn et al. 2007). A sample of 160 quality-controlled

paired observations is used for model function de-

velopment, while another ;240 dropsondes are used for

evaluation purposes, including validation of observations

from an older SFMR instrument version. Following

Franklin et al. (2003), the surface wind speed is estimated

by adjusting themean lowest 150-m-layerwind speed [the

‘‘WL150’’ wind speed coded in theWorldMeteorological

Organization (WMO) TEMP DROP message] using

a cubic polynomial function (Uhlhorn et al. 2007). The

present study uses a greater-than-one order-of-magnitude-

larger sample (.2700) of dropsonde-measured surface-

adjusted wind speeds in TCs from 1999 to 2012 to both

evaluate current SFMR accuracy and develop a revised «

versus Usfc function.

c. Precipitation

1) WP-3D PIP

To obtain independent measurements of rain in TCs

from the aircraft, in situ data from a Droplet Measure-

ment Technologies Precipitation Imaging Probe (PIP)

are used. This instrument has a particle resolution of

100mm and has a droplet detection range up to 6200mm

with a sampling area of 16.12 cm2, measuring along the

flight track at a rate of 1Hz (Black and Hallet 2012).

Quality-controlled data from the PIP are obtained from

14 radial legs in two hurricanes [10 in Katrina (2005) and

4 inEarl (2010)]. These flights were chosen because of the

reasonably high quality of PIP data (R. Black 2012, per-

sonal communication). The PIP rain-rate measurements

are correlated with concurrent, collocated radar re-

flectivity data to develop a practical radar reflectivity (Z)

versus PIP rain-rate (Rpip) relationship for computing

radar rain estimates to address questions about SFMR

rain absorption accuracy.

2) WP-3D TAIL DOPPLER RADAR

A second independent estimate of rain used in this

study is derived from NOAA tail Doppler radar (TDR)

reflectivity observations. Each NOAA WP-3D is

equipped with a vertically scanning, X-band Doppler

radar in the tail of the aircraft. The TDR is used pri-

marily for three-dimensional mapping of the TC wind

field (Jorgensen et al. 1983; Jorgensen 1984; Marks 1985;

Marks et al. 1992), and implements a mechanical 6208
fore/aft scanning technique for retrieving horizontal

wind vectors (Gamache et al. 1995). In this study, ver-

tical profiles of TDR reflectivities are used to quantify

precipitation below the freezing level along the flight

track. These profiles have a vertical resolution of 150m

and an along-track resolution of 1.5 km (Lorsolo et al.

2010). In addition to reflectivity profiles obtained on the

14 radial legs coincident with the PIP observations, data

from 26 radial legs in three different hurricanes [14 in

Rita (2005), 5 in Felix (2007), 7 in Bill (2009)] are ex-

amined to quantify a relationship between the TDR

reflectivity-derived rain rate and the increase in SFMR

Tb due to microwave absorption.

3. SFMR wind speed bias

The SFMR surface wind speed retrieval bias relative

to surface-adjusted GPS dropsonde wind speeds is

evaluated. The SFMR wind speed (Usfmr) and rain rate

(Rsfmr) is paired with the dropsonde-measured Usfc at

the time of dropsonde launch. Despite the fact that

a dropsonde at the surface is generally horizontally

displaced from the launch location due to transport by

the wind, most of the displacement is in the azimuthal

direction with respect to the TC center, while the hori-

zontal wind gradient is largest in the radial direction. As

found by Uhlhorn et al. (2007), there is no statistical

difference between using this approach of correlation

versus pairing measurements at the same radial distance

from the storm center.

These SFMR and dropsonde observations are placed

into wind speed and rain-rate bins based on the SFMR

measurements. The five wind speed bins range from

tropical depression intensity or less (Usfmr , 17m s21),

weak tropical storm (17 # Usfmr , 25m s21), strong

tropical storm (25 # Usfmr , 33m s21), category 1 and

2 hurricanes (33 # Usfmr , 50m s21), and major cate-

gories 3 through 5 hurricanes (Usfmr $ 50m s21), as de-

fined somewhat arbitrarily by the Saffir–Simpson wind

speed scale. Four rain-rate bins are divided equally every

10mmh21 starting from zero up to rain rates of Rsfmr .
30mmh21. Differences between SFMR- and dropsonde-

measured wind speeds (i.e., dU 5 Usfmr 2 Usfc) are cal-

culated along with their respective bin-average values.

Table 1 shows data sample sizes for each bin. Although

there are numerous missions with available data, the vast

majority of measurements are in weak precipitation
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(Rsfmr , 10mmh21). Typically, reconnaissance and re-

search missions do not specifically target areas of heavy

rain outside of the TC eyewall for dropsonde de-

ployment. From Table 1, fewer than 10 direct surface

wind observations were identified in winds Usfmr ,
25m s21 and rain rates Rsfmr . 30mmh21. This presents

a significant issue, since the primary goal of this research

is to quantify and ultimately correct wind speed retrieval

bias in heavy rain conditions, particularly for weaker

wind speeds.

To address this systematic dropsonde undersampling of

surface wind speeds at high rain rates, surface-adjusted

wind speeds are estimated from flight-level winds. Ob-

served dropsonde WL150 wind speeds (UWL150) and

corresponding flight-level wind speeds are obtained from

several NOAA WP-3D flights in hurricanes during the

2010 and 2011 seasons. Data are restricted to being ra-

dially outward of twice the radius of maximum wind

speed to reduce the negative impact of TC warm-core-

induced eyewall tilt (Dunion et al. 2003) and are only

included if the flight-level wind speed was measured

within 660mb of the standard 700-mb level. A total of

537 UWL150 wind speeds are correlated with the flight-

level wind speed (UFL), and a quadratic polynomial is fit

to the data using a least squares regression:

UWL150 5 2:303 1022U2
FL 1 0:72UFL 1 3:21, (1)

where both UWL150 and UFL are in meters per second.

Figure 1 shows a scatterplot of the UFL versus UWL150

data and regression fit. There is reasonably good cor-

relation (r 5 0.91) with an RMSE of 5.4m s21. The re-

sidual scatter around this relationship may be due to

several potential factors, including both small-scale

variability and low-wavenumber asymmetric structural

differences between the surface and flight level

(Uhlhorn et al. 2014). This is not unexpected, as Dunion

et al. (2003) found a similar result comparing 700-mb

flight-level winds to the lowest 500-m layer-mean

dropsonde wind speed (r 5 0.82; RMSE 5 7.8m s21).

Although some additional error in the estimated surface

wind speed will result from this relationship, such

a penalty for obtaining surface wind measurements in

strong precipitation appears necessary. Next, flight-level

winds are obtained from numerous aircraft missions

over the 1999–2012 period in which the SFMR-retrieved

rain rate exceeds 10mmh21 but no corresponding

dropsonde measurement is available. A synthetic sur-

face wind speed is calculated by computing the UWL150

estimate from the flight-level wind speed using Eq. (1)

and then adjusting the surface similarly to actual drop-

sonde data. In Table 1, the number of synthetic pairs per

bin is determined by subtracting the number of real

observations (in parentheses) from the total number for

each bin. The percentage of synthetic dropsonde Usfc

estimates is largest for the high rain-rate bins and lower

wind speeds bins where the number of direct observa-

tions is particularly lacking.

A random 80% sample of dU, Usfmr, and Rsfmr is

drawn from each wind speed and rain-rate bin, including

the synthetic data, to quantify the bias as a function of

the SFMRwind/rain retrievals. Sample mean values and

standard deviations for each bin are computed, and

a polynomial is fit to the bin-averaged data using a

TABLE 1. Total number of SFMRandGPS dropsonde pairs for the designated SFMR-based wind speed and rain-rate bins (inm s21 and

mmh21, respectively). Data included are from years 1999–2012. Observed dropsonde wind speed pairs are noted in parentheses with the

difference between the total and observed data representing the number of synthetic pairs.

0 # Usfmr , 17 17 # Usfmr , 25 25 # Usfmr , 33 33 # Usfmr , 50 Usfmr $ 50

0 # Rsfmr , 10 1356 (1356) 690 (690) 354 (354) 196 (196) 27 (27)

10 # Rsfmr , 20 54 (16) 292 (73) 290 (124) 335 (134) 25 (21)

20 # Rsfmr , 30 23 (5) 96 (12) 92 (44) 144 (69) 36 (24)

Rsfmr $ 30 5 (1) 19 (7) 29 (18) 89 (48) 57 (23)

FIG. 1. Scatterplot of flight-level (UFL) vs WL150 (UWL150)

dropsonde wind speed and the quadratic regression fit (solid line).

The dashed–dotted line is the line of perfect correlation.
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weighted least squares regression. The applied weights

are the inverse standard deviation for each bin multi-

plied by the minimum standard deviation over all bins.

For example, the bin with the smallest standard de-

viation receives a weight of 1.0, and weights tend toward

zero with increasing standard deviation. The resulting

regression equation is

dU526:793 1022Usfmr 1 9:363 1022Rsfmr

2 3:903 1024UsfmrRsfmr 1 3:05, (2)

where dU andUsfmr are in meters per second. Generally,

the bias increases with rain rate and decreases with wind

speed, as prior anecdotal evidence has suggested.

Figure 2 graphically shows the bias (dU) as a function of

Usfmr andRsfmr according to Eq. (2). Also shown in Fig. 2

are the sample sizes for each bin, mean biases, and the

weight given to the particular bin for estimating the re-

gression coefficients. The remaining 20% of the sample

are used to obtain an independent estimate of the bias-

correction model’s uncertainty. The mean bias of the in-

dependent sample is12.26 0.3m s21 (95% confidence),

and after applying the adjustment in Eq. (2) toUsfmr, the

mean bias of the independent sample is a statistically

insignificant 20.1 6 0.3m s21.

The bias correction in Eq. (2) is currently being used

by the National Hurricane Center for operational hur-

ricane analysis when airborne reconnaissance data are

available. GivenUsfmr and Rsfmr transmitted in the high-

density observations (HDOB) messages, the bias dU is

computed and subtracted from Usfmr to obtain a more

accurate SFMR wind speed. Later in this study, when

deriving the rain absorption coefficient, this same cor-

rection will be applied to Usfmr to compute the surface

emissivity contribution to the observed Tb.

4. Algorithm revisions

a. Surface emissivity versus wind speed

In an earlier version of the SFMRwind speed retrieval

algorithm used prior to 2006 (Uhlhorn and Black 2003),

surface wind speed accuracy was validated from 10 to

50m s21. Observations in major hurricanes during the

2003–05 seasons indicated a lack of SFMR retrievals at

FIG. 2. SFMR wind speed bias-correction model [Eq. (2)] on the 80% random sample of

SFMR–dropsonde pairs. Positive biases correspond with red colors, and negative biases cor-

respond with blue colors. Text on the figure indicates the total number of pairs within the

random sample (with real pairs in parentheses, similar to Table 1), the bin-mean wind speed

bias, and the bin standard deviation weight applied during the model development.
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the expected category 4 and 5 maximum winds as

compared to near-surface dropsonde measurements. To

address this discrepancy, an emissivity versus wind

speed («2Usfc) model was developed based on a sample

of 160 in situ dropsonde surface wind speeds (Uhlhorn

et al. 2007), which corrected the systematic SFMR ex-

treme wind speed (Usfc . 60m s21) underestimation.

Because of the relatively limited sample size fromwhich

the «2Usfc relationship was developed, measurements in

precipitating regions could not be excluded, and the im-

pact of rain on brightness temperature was estimated to

compute the SFMR surface emissivity. Implicit in the

assumption of accurate emissivity values was that the rain

absorption model was unbiased, at least to an acceptable

level. With a vast increase in collocated SFMR and

dropsonde wind speed observations since then, it has be-

come clear that SFMR wind speeds are typically over-

estimatedwithinweakerwind speed regimes coupledwith

heavy precipitation, and a biased rain absorption model is

one possible explanation for this problem.

An evaluation of the currently implemented operational

« 2 Usfc model version is performed by reasonably elimi-

nating wind observations in precipitation. A sample of

dropsondes from over 200 NOAA and AFRC flights be-

tween 2005 and 2012 was used to compare with 10-s aver-

aged SFMR-measured emissivity at the time of dropsonde

launch.At lower dropsondewind speeds ofUsfc, 35ms21,

measurements for which Rsfmr , 2mmh21—which is near

the noise level—are retained; for speeds 35 , Usfc ,
60ms21, only measurements with Rsfmr , 10mmh21 are

saved; however, all measurements for Usfc . 60ms21 are

included, regardless of the rain rate, since the impact of rain

at highwind speeds is far less than at lowerwind speeds due

to the high surface emissivity. After removing these ob-

servations, 1513 SFMR–dropsonde measurement pairs are

retained over the wind speed range 0 , Usfc , 75ms21.

The nadir-incidence surface emissivity is computed from

the SFMR Tb by rearranging the radiative transfer equa-

tion [Eq. (A6) of Uhlhorn and Black 2003]. In the absence

of precipitation, it is possible to set tr 5 1 in Eq. (1) from

Uhlhorn et al. (2007) to obtain the emissivity of the ocean

surface:

«5
t21
a (Tb2Tup)2Tsky

Ts 2Tsky

, (3)

where Tb is the SFMR-measured brightness tempera-

ture, Tup is the upwelling brightness temperature from

the atmosphere below the aircraft, Tsky is the down-

welling total atmospheric brightness temperature plus

cosmic background, Ts is the sea surface temperature,

and ta is the atmospheric transmissivity of the layer

below the aircraft. The nadir-incidence Fresnel re-

flection coefficient (G) at frequency f is calculated using

the Klein and Swift (1977) algorithm for given Ts and

surface salinity (S), and the smooth surface emissivity is

«0 5 12G. The nadir, wind-induced, excess emissivity

(«w) is obtained by subtracting «0 from the measured

surface emissivity:

«w( f ,Usfc)5 «( f ,Ts,S,Usfc)2 «0( f ,Ts,S) . (4)

Τhe GMF directly relates «w and Usfc at each SFMR

frequency channel. Because it is the lowest frequency

(longest wavelength), measurements from the 4.74-GHz

channel are expected to be the least impacted by rain,

and this channel is therefore chosen as the reference for

the «w – Usfc model. A functional form identical to the

operational model consisting of two linear functions

connected at intermediate wind speeds with a quadratic

function [Eq. (5)] is fit to the observations with a con-

strained piecewise regression using a Levenberg2
Marquardt method:

«w,4:74 5

8><
>:

a1Usfc

a21 a3Usfc1 a4U
2
sfc

a5 1 a6Usfc

0#Usfc,wl

wl #Usfc ,wu

wu #Usfc

. (5)

As in Uhlhorn et al. 2007, the low-wind breakpoint is set

towl5 7m s21, where wave breaking and foam begins to

occur (Monahan 1971; Ross and Cardone 1974), and the

high-wind breakpoint wu 5 37.0m s21 is determined via

trial and error to minimize the RMSE of the fit. Revised

coefficients for the model function are given in Table 2

for the 4.74-GHz channel.

Figure 3a shows «w,4.74 versus Usfc, along with the

operational and revised models at 4.74GHz. The oper-

ational version developed from the relatively limited

data sample (Uhlhorn et al. 2007) appears remarkably

accurate in comparison to the function determined

here based on the much larger sample size. The RMSE

of the fit is 0.012 (or, in dimensional terms, ;3.5K at

TABLE 2. Coefficients for the wind-induced emissivity vs wind speed model are provided for the operational algorithm and for the revised

algorithm. For the revised version, the data are in conditions with no precipitation (i.e., rain rate , 2mmh21).

a1 a2 a3 a4 a5 a6 wu

Operational 4.012 3 1024 2.866 3 1023 24.177 3 1024 5.849 3 1025 25.666 3 1022 3.314 3 1023 31.9

Revised 1.232 3 1023 3.440 3 1023 2.492 3 1024 7.020 3 1025 29.266 3 1022 5.444 3 1023 37.0
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Ts 5 301K), which is nearly equivalent to the emissivity

residual error in the operational version. Although the

difference is quite small, the most significant difference

is found in the 10–20m s21 range, where the revised

emissivity values are on average slightly higher.

In addition, there is a small frequency-dependent

component of the excess emissivity that must be consid-

ered. The assumed frequency sensitivity («0w 5 d«w/df )

was based on historical passive microwave observations

of the sea surface (Webster et al. 1976), but until now it

has not been verified with SFMR data. The operational

algorithm version’s excess emissivity sensitivity to fre-

quency is «0w 5 0:15«w, and therefore is wind speed–

dependent via «w. To verify the validity of this frequency

dependence, the slope «0w is computed by fitting a least

squares regression line to each set of the six «w versus f

measurements. The resulting slope is then plotted as

a function of Usfc (Fig. 3b). A quadratic polynomial is

next fit to the observations:

«0w55:1663 1026U2
sfc11:8603 1025Usfc1 2:7883 1024.

(6)

The unit for «0w is inverse gigahertz. The functional fit

[Eq. (6)] and the slope function implemented in the op-

erational algorithm are also plotted in Fig. 3b. Evidently,

the small frequency dependence is currently estimated

with a high degree of accuracy, since both the curves in

Fig. 3b are reasonably close to each other, but this revised

slope function is chosen and implemented as part of the

proposed model function update to maintain consistency

with the observations. The proposed revised GMF for

emissivity applicable to all SFMR channels now reads

«5 «w,4:74 1 «0wDf 1 «0 , (7)

where «w,4.74 and «0w are functions of Usfc, and Df 5 f 2
4.74GHz.

b. Microwave absorption by rain

The impact of precipitation on brightness tempera-

ture is generally represented by an attenuation co-

efficient, which is nominally a function of liquid water

content, frequency, and temperature (e.g., Matrosov

et al. 2002, 2005).At the lowmicrowave frequencies of the

SFMR, scattering may be neglected because of the large

wavelength to dropsize ratio, even for large drops in

tropical convection, and attenuation may be more sim-

ply represented by an absorption coefficient (k). Also,

the relatively small temperature variation in a TC may

be safely neglected (Jiang et al. 2006). Development of

the currently operational absorption versus rain-rate

(k2 R) relationship (Uhlhorn and Black 2003) was pri-

marily based on radar reflectivity-derived rain rates

computed by JW82 in hurricane conditions.

1) RAIN COLUMN DEPTH

SFMR rain-rate retrievals were examined in relation

to other sources of precipitation observations (Jiang

et al. 2006), and results of an intercomparison with

radar-derived rain rates indicated a tendency for over-

estimating weak rain rates and underestimating strong

rain rates. It was concluded that a possible cause for this

apparent behavior was uncertainty in estimating the

height of the rain column. In the operational im-

plementation, the height of the rain column (i.e., the

freezing level) is set to a constant 4 km above the sur-

face. In the present calculations of the absorption co-

efficient, the freezing level (H) is estimated from the

aircraft flight-level temperature and altitude assuming

a typical hurricane temperature profile:

FIG. 3. Scatterplots of (a) wind-induced excess emissivity («w) at 4.74GHz as a function of the surface-adjusted

dropsonde wind speed (Usfc), and (b) excess emissivity slope with respect to frequency («0w 5 d«w/df ) vs Usfc. Blue

(red) lines are operationally implemented (revised) model functions. In (a), wind speed bin-averaged «w is plotted as

red markers, with bin standard deviations indicated by error bars.
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H5 h1 g21Tamb , (8)

where h is the aircraft altitude (m), Tamb is the ambient

flight-level temperature (K), and g5 5.223 1023Km21

is the mean lapse rate determined from a large number

of dropsonde temperature profiles obtained in hurri-

canes (Zhang and Uhlhorn 2012).

2) TDR-DERIVED RAIN RATE IN HURRICANES

The JW82 reflectivity versus rain rate (Z–R) relation-

ship is Z 5 300R1.35, where R is in millimeters per hour

andZ is inmm6m23.Withmore data resources available,

along with significant improvements to instrumentation,

we revisit this relationship in light of the SFMR rain-rate

retrievals. Specifically, path-averaged TDR reflectivity

data are compared with in situ PIP rain-rate data ob-

tained in several recent aircraft missions in TCs.

Since the primary purpose of the WP-3D TDR is for

measuring wind, an accurate calibration of reflectivity

has often been neglected. Jiang et al. (2006) review

several assessments of radar reflectivity bias, which has

previously been found to be between 5 and 8 dB too low.

Jiang et al. (2006) compared TDR reflectivity with

calibrated National Aeronautics and Space Adminis-

tration ER-2 aircraft Doppler (EDOP) radar data and

concluded that a 6-dB offset added to the TDR data

produced acceptable (within;1–2-dB error) reflectivity

values. The currently accepted ad hoc approach to cor-

rect the apparent underestimation is to add 7dB to the

measured reflectivity factor (J. Gamache 2014, personal

communication). Additionally, the radar antennas used

on the two aircraft are not identical. One radar uses

a parabolic antenna (‘‘NOAA antenna’’), while the other

uses a dual-flat-plate antenna (‘‘French antenna’’; Gamache

et al. 1995). Because data from both radars are used, it is

possible that calibration differences could impact results. To

evaluate how well these radars were calibrated and how

they relate to one another, a quantitative comparison of

reflectivity cumulative distributions for eachantenna reveals

no major differences in measured reflectivity (Fig. 4). The

median reflectivity computed from the composite cumula-

tive distributions for both radars are nearly identical. Re-

flectivity from theNOAAantenna (Fig. 4a) appears to have

a broader low rain-rate tail, suggesting greater sensitivity.

The SFMR is not sensitive to such low rain-rates charac-

teristic of weak, stratiform precipitation, and these low re-

flectivity data should not impact the overall SFMR results.

Layer-meanTDR reflectivity values vertically averaged

from just above the sea surface (to eliminate sea clutter) to

near the freezing level are computed for 14 radial profiles

from two hurricanes (see section 2c). The bright band,

which due to melting precipitation can increase the re-

flectivity by as much as 7dB near the 08C isotherm

(Rinehart 2004), is removed by neglecting measurements

within ;500m of the estimated freezing level. Also,

X-band TDR reflectivity is subject to significant rain at-

tenuation over extended distances. However, at X-band

frequencies the specific attenuation is ;0.2dBkm21 for

reflectivity factor ,40dBZ, increasing to ;1dBkm21 at

50dBZ (e.g., Park et al. 2005). Since the range for the

vertical profiles is at most ;3km, an attenuation correc-

tion can be reasonably ignored here.

As an example, a radial distance/height TDR reflec-

tivity vertical cross section from a single outbound radial

leg in Hurricane Earl (2010) is shown in Fig. 5a. For this

same radial leg, the below-freezing-level layer-mean

FIG. 4. Empirical cumulative distributions of layer-mean TDR reflectivity factor (dBZ) below the freezing level for

(a) the NOAA parabolic antenna and (b) the French dual-flat-plate antenna. Each distribution is a radial leg: (a) 45

radial legs and (b) 22 radial legs. The solid black line in each panel is the composite mean cumulative distribution,

with 61 standard deviation (dashed lines).
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TDR reflectivity computed from the cross section, the in

situ PIP rain rate, and the retrieved SFMR rain rate are

shown in Fig. 5b. Qualitatively, all three independent

measurements of the precipitation compare well, as the

eyewall, outer rainbands, and relatively dry ‘‘moat’’ re-

gion are clearly identifiable. Peak layer-mean reflectivity

in the eyewall around 20km from the storm center is

;45dBZ, consistent with maximum Tropical Rainfall

MeasuringMission PrecipitationRadar reflectivity below

the melting level (Jiang et al. 2013) in TCs. This re-

flectivity peak is collocated with a maximum SFMR rain

rate of ;17 dBR (or ;50mmh21), and a peak PIP rain

rate of ;21dBR (;125mmh21). Notice in Fig. 5b that

the variance in the in situ PIP rain rates is substantially

higher than both the radar and SFMRdata because of the

much smaller sampling volume of the PIP. The SFMR

FIG. 5. (a) Tail Doppler radar reflectivity factor vertical cross section for a single outbound

radial leg inHurricaneEarl (2010), and (b) rain column-average TDR reflectivity factor (black,

dBZ), PIP in situ rain-rate factor (blue, dBRpip), and SFMR-retrieved rain-rate factor (red,

dBRsfmr). In (a), the solid black line is the estimated freezing level and the dashed line is the

aircraft flight altitude. Note that radar reflectivities near the bright band are removed from the

layer averaging.

FIG. 6. (a) Empirical cumulative distributions are provided for the PIP rain-rate factor (black) and TDR column-

mean reflectivity factor (red) for all samples (n5 1836) from the 14 matched radial legs, and (b) probability-matched

PIP rain-rate factor vs TDR reflectivity withmarks from 5% to 95%probability level are shown. In (b) the regression

fit (black solid line) is provided, and the JW82 Z–R hurricane relationship is plotted (red solid line).
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and TDR have reasonably comparable sampling vol-

umes and resulting data variability.

From the 14 aircraft radial legs, a sample of 1836 of

collocated TDR reflectivity (Ztdr) and PIP rain-rate (Rpip)

data is obtained.Data are discardedwhenZtdr, 7dBZ or

when the PIP number concentration is ,200 drops per

liter, since ultimately the C-band SFMR is insensitive to

such weak precipitation. Cumulative distributions of

TDR and PIP observations are shown in Fig. 6a. Median

reflectivity and rain rate are ;33 dBZ and ;6 dBR

(;3mmh21), respectively. Variances for each quantity

are reasonably comparable, although the PIP shows

a larger weak precipitation tail. Maximum reflectivity

in this sample is ;49 dBZ. Peak PIP rain rates are

;25 dBR (;316 mm h21), although such extreme

values are highly infrequent and would likely not be

detected by the SFMR because of its far larger sampling

volume.

To estimate a practical Z–R relationship, statistical

probability matching (Rosenfeld et al. 1993, 1994) is used,

in which observations at specified percentile levels for

each dataset are correlated. Probability levels are com-

puted from 5% to 95% (Fig. 6b); the highest and lowest

5%are not considered because the radar (and its relatively

large sampling volume) cannot resolve these highly lo-

calized extrema. Probability levels of PIP rain rate versus

TDRreflectivity are shownon a log scale inFig. 6b.Afit to

these data results in the following Z–R relationship:

FIG. 7. Coordinated SFMR and TDR measurements for two radial passes (inbound and outbound from the center) in Hurricane Rita

between 1506 and 1536 UTC 21 Sep 2005. The contents of the four panels are (a) SFMR Tb (K) for all frequency channels, (b) vertical cross

section of TDR reflectivity factor (dBZ), (c) SFMR-derived rain absorption coefficient (k, Np km21), and (d) TDR layer-mean reflectivity-

derived rain rate (Rtdr, mmh21). The solid and dashed lines in (b) indicate the estimated freezing level and the aircraft flight altitude,

respectively.

TABLE 3. Empirically determined coefficients for Eq. (12) for the

operational (top row) and updated (bottom row) versions of the

k–R relationship.

g c d b

Operational 1.87 3 1026 2.60 0.0736 1.15

Revised 3.94 3 1026 2.63 0.0600 0.87
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Z5 456R1:07
pip . (9)

For comparison, the JW82 hurricane Z–R relationship

is also shown in Fig. 6b. Each function yields a similar

reflectivity value for the median rain rate, but the results

here suggest a weaker radar sensitivity to rain rate than

indicated by the JW82 results (i.e., a smaller rain-rate

exponent). Some of this apparent sensitivity loss may be

due to the vertical averaging and inherent smoothing of

the reflectivity data because the JW82 results were derived

from a more direct point-by-point intercomparison of ob-

servations. Because of this vertical averaging, this Z–R

relationship in Eq. (9) should not be used for pointwise

studies. An evaluation of the flight-level TDR reflectivity

as compared to the layer-mean reflectivity finds a mean

absolute difference on the order of;1–1.5dB. Such a small

difference in reflectivity does not warrant the need to use

the flight-level point measurement. In fact, the layer-mean

value is more representative of the path-averaged micro-

wave brightness temperatures observed by the SFMR, to

which radar-derived rain rates are correlated for this study.

3) SFMR ABSORPTION VERSUS TDR RAIN RATE

The microwave rain absorption coefficient (k) is com-

puted by first solving for the total rain column trans-

missivity (tr) in the SFMR radiative transfer equation:

c2(12 «)t(11h/H)
r 1 c1t

h/H
r 1 c05 0, (10)

where

c2 5 ta,h[hTa,hi2 ta,‘(hTa,‘i1 hTr,Hi2Tc)] ,

c1 5 ta,h[«Ts1ta,‘(12 «)hTr,Hi2hTa,hi2 hTr,Hi]1hTa,hi,
c0 5 ta,hhTr,Hi2Tb ,

and h/H # 1, since absorption by frozen precipitation is

neglected. In the coefficients for Eq. (10), the first sub-

script a refers to atmospheric contribution, or r for rain

contribution; and the second subscript is either h for

FIG. 8. Quantile–quantile plot of probability-matched TDR-

derived rain-rate factor (dBRtdr) vs SFMR-derived absorption

coefficient [log(k)] for data (over 21 000 samples) obtained from 26

radial legs, and regression fit to data (solid lines), given by the

empirical k–R relation in the figure. The corresponding linear rain

rate is marked on the top horizontal axis. Probability levels are

marked from 1%, 5%–95%, and 99%, with the lowest and highest

1% of the data annotated. Note the loss of SFMR sensitivity at the

weakest rain rates, as there is much less change in absorption across

the frequency band than at higher rain rates.

FIG. 9. (a) Currently operational and (b) revised rain absorption coefficient (k, Npkm21) model functions for each

SFMR frequency channel.
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contribution below the aircraft height, H for total rain

column contribution, or ‘ for total atmospheric contri-

bution. Angle brackets denote a mass-weighted layer

average physical temperature.

Collocated SFMR Tb data and TDR reflectivity ver-

tical profiles are obtained from 26 radial legs in three

hurricanes (see section 2c). Because these data are in-

dependent of the coincident PIP dataset, a larger and

more representative sample of the SFMR and TDR

comparison is obtained for the development of the k–R

function. The surface emissivity here is computed from

the bias-corrected [Eq. (2)] operational SFMR-retrieved

wind speed using the updated form of «w from Eq. (7),

and the flight-level temperature and altitude are used to

compute the other quantities (i.e., column mean physi-

cal temperatures, gas transmissivity) to determine the

coefficients ci. Equation (10) is solved for tr using an

iterative Newton–Raphson method, and the absorption

coefficient is ly computed as

k52H21 ln(tr) . (11)

Layer-averaged TDR-derived rain rate (Rtdr) at the

SFMR observation location is calculated using the Z–R

relationship [Eq. (9)]. Over 21 000 samples of k at each

channel are paired with the collocatedRtdr observations.

For example, SFMRTb and TDR reflectivity, along with

derived k and Rtdr, are shown in Fig. 7 for a complete

radial traverse through Hurricane Rita between 1506

and 1536 UTC 21 September 2005. The Tb (Fig. 7a)

generally increases as the eyewall is approached because

of the high-wind-induced surface emissivity. However, it

is the spreading across the SFMR frequency channels

that results in increased absorption (Fig. 7c). Clearly,

this is highly correlated with the radar-derived rain rate

(Fig. 7d).

An empirical k–R relationship is determined assuming

a power law of the form k5 aRb
tdr consistent with the

operational SFMRmodel for rain absorption.As inOlsen

et al. (1978), the coefficient a depends on frequency and

rain rate and therefore the model can be written as

k5 gf nRb
tdr . (12)

The frequency exponent n has been shown to have

a small dependence on R and is also expressed as

a power law: n 5 cRd (Atlas and Ulbrich 1977). The

empirical coefficients b, c, d, and g are determined by

FIG. 10. Histograms for the operationally computed rain rates (black) and recomputed rain

rates from the revised model (gray) for measurements that are paired with a dropsonde (not

shown). Rain-rate factor (dBRsfmr) is labeled at the bottom and corresponding linear rain rate

(Rsfmr, mmh21) is labeled at the top of horizontal axis. Both a broader distribution and higher

peak rain rates are obtained when using the revised model function. The maximum retrieved

SFMR rain rate increases by nearly 2 dBR, or from 59 up to 91mmh21.
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fitting the SFMR absorption coefficient data to the

TDR-derived rain-rate estimates. Cumulative probability

levels from 1% to 99% are matched, and a Levenberg–

Marquart nonlinear least squares method is used to fit

Eq. (12) to the probability-matched data.

Coefficients for the currently operational version of

the rain absorption model and the revised coefficients

are given in Table 3. Figure 8 shows the data and re-

gression fits for the revised version. Below ;5 dBR

(;3mmh21), which corresponds to;30 dBZ, the signal

appears to be lost, indicating a lower limit of SFMR

sensitivity. Note, also, that the real-time reporting

precision for SFMR rain rate is 1mmh21; retrieved

values less than 0.5mmh21 are reported as zero (or

missing) rain rate. The highest 1% of TDR rain rates

is Rtdr . 55mmh21, whereas operationally measured

SFMR rain rates rarely exceed this value. In Fig. 9, a com-

parison of the currently operational and revised k–R re-

lationships suggests that the absorption is overestimated

by roughly a factor of 2 across the frequency band.

Thus, for a given set of Tb observations, the opera-

tional algorithm would tend to assign too much of the

brightness (and hence, rain) to the absorption and

therefore too little to the emissivity (and hence, wind).

5. Evaluation

a. Revised SFMR rain rates

As a consequence of the biased operational rain ab-

sorption model function, the dynamic range of retrieved

rain rates was limited. Maximum rain rates rarely

exceeded 55mmh21, which is fairly low compared to in

situ observed rain-rate values, even after accounting for

spatial sampling mismatches between in situ and remote

sensing observational estimates. This is a result mainly

from an impropermodel sensitivity loss (i.e., small dR/dk)

at high rain rates. As indicated in Fig. 9a for the opera-

tional algorithm at high rain rates, a large increase in k

results in only a small relative increase in the retrieved R,

while in Fig. 9b, a similar increase in k will yield a much

larger increase in R.

SFMR rain rates are computed using both the opera-

tional algorithm and proposed modifications for the

sample collocated with dropsonde surface winds, and

distributions are shown in Fig. 10. Overall, the proposed

new absorption model increases the variance of SFMR-

retrieved rain rates and yields far greater maximum

values, up to Rsfmr 5 91mmh21 in this sample, as com-

pared to 59mmh21 in the operational retrievals. Re-

cently, SFMR rain rates have been evaluated against rain

rates derived from airborne WSRA radar attenuation

measurements, as well as coastal WSR-88D NEXRAD

reflectivity-derived values (Walsh et al. 2014). Based on

extensive observations inHurricane Irene (2011) offshore

of theNorthCarolinaOuterBanks, SFMRrain rates were

found to be biased low at high rain rates, and biased high

at low rain rates, consistent with the conclusions of Jiang

et al. (2006) and the results found in this work.

b. Revised SFMR surface wind speeds

SFMR wind speeds are recomputed using the re-

vised algorithm, and the improvement in retrieval

FIG. 11. (a) Scatterplot of dropsonde Usfc vs Usfmr for the operationally computed winds. (b) As in (a), but

computed with the revised model function (gray points). Linear regression fits (thick black lines) and regression

statistics are shown in each panel. Perfect correlation (thin gray line) is shown for reference.

2404 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 31



accuracy over the operationally determined speeds

is evaluated against the collocated observed dropsonde

surface wind speed measurements. Figure 11 shows

scatterplots for wind speeds computed using the opera-

tional algorithm and the proposed revised algorithm. A

significant improvement in surfacewind speed accuracy is

found over all sampled wind speeds and rain rates based

on the correlation (slope of best-fit line increases from

0.88 to 0.98), while the RMSE decreases from 4.5 to

3.9m s21. Note that the sample sizes are slightly different,

since the numerical inversion procedure does not guar-

antee solutions for all measurements.

Further details about surface wind speed retrieval

improvements are examined by stratifying according to

wind speed greater than and less than the hurricanewind

speed threshold (Usfc 5 33m s21), and whether the

measurement is inside or outside of precipitation. A

rain/no-rain threshold of Rsfmr 5 2mmh21 is chosen,

since the SFMR is not sensitive at these weak rain rates.

Figure 12 shows frequency histograms of SFMR wind

speed bias, defined as the difference between the SFMR-

retrieved wind speed and the collocated dropsonde-

measured surface wind speed (Usfmr 2 Usfc). Distributions

are stratified according to wind speed (columns) and

precipitation (rows). Significant reductions in SFMR

overestimates are found for the weaker wind cases

(Usfc, 33m s21), both outside of rain (Fig. 12a, decrease

from12.4 to20.2m s21) and within rain (Fig. 12c, from

12.8 to 11.0m s21), on average. Above the hurricane

wind speed threshold (Figs. 12b,d), no significant

changes in bias are found, and the mean biases for both

the operational and revised algorithms are not signifi-

cantly different from zero.

In Fig. 13, frequency distributions of SFMR wind

speed bias are shown for measurements obtained in

heavy precipitation (Rsfmr . 20mmh21). As pictured in

Fig. 13a, a significant reduction in mean bias from 15.1

to13.7m s21 for wind speeds less than hurricane force is

found by applying the revised algorithm, although a high

bias still remains. As for all rain conditions for wind

speeds greater than hurricane force, no statistically sig-

nificant biases are found in either the operational or

revised algorithm retrievals (Fig. 13b).

Finally, wind speed retrieval accuracy is evaluated at the

defined minimum criteria for tropical depressions (peak

Usfc 5 13ms21), tropical storms (peak Usfc 5 18ms21),

and hurricanes (peak Usfc 5 33ms21). Surface wind

speeds within64ms21 of these thresholds are considered,

FIG. 12. Histograms of the operational (black) and revised (gray) wind speed bias (Usfmr 2 Usfc, m s21) for

(a),(c) speeds less than (Usfc, 33ms21) and (b),(d) greater than (Usfc$ 33ms21) theminimum hurricane threshold

in (a),(b) nonprecipitating conditions (Rsfmr, 2mmh21) and in (c),(d) precipitating conditions (Rsfmr$ 2mmh21).

Sample sizes and mean biases for each group are indicated.
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since this value is approximately the uncertainty of SFMR

winds according to the RMSE of the GMF. The wind

speed bias as a function of SFMR rain rate for these three

conditions for the operational and revised versions is

shown in Fig. 14. Bin-average wind speed biases and cor-

responding 95% confidence intervals are computed. Note

that bins for operational and revised rain rates are differ-

ent, since the distribution of computed rain rates is dif-

ferent for each dataset (see Fig. 10).

For wind speeds around minimal depression (Fig. 14a)

and tropical storm (Fig. 14b) strengths, there is a consis-

tent reduction in the bias at all rain rates, but the signif-

icance in reduction at SFMR rain rates. 20mmh21 may

be lower because of limited sample sizes. For wind speeds

near the hurricane wind speed threshold (Fig. 14c), no

significant differences among versions are found, and the

bias is less than;2m s21 over all retrieved rain rates. For

wind speeds of Usfc $ 40ms21, no bias is found to exist

regardless of the rain rate (not shown).

6. Summary and conclusions

The operational SFMRs flown on the NOAAWP-3D

and AFRC WC-130J fleet of aircraft provide surface

wind speed measurements in the TC inner core and,

when available, can aid forecasters in more accurately

determining the intensity of a TC. Because the SFMR

surface wind speed algorithm was developed primarily

within hurricane conditions, the current algorithm is

FIG. 13. As in Fig. 12, but for Rsfmr . 20mmh21 when surface

wind speed is (a) less than and (b) greater than the hurricane wind

speed threshold.

FIG. 14. Bin-averaged wind speed bias (Usfmr 2 Usfc, m s21) as

a function of SFMR-retrieved rain rate for the operational (black)

and revised (gray) SFMR wind speeds around the surface wind

speed criteria for (a) tropical depression (Usfc 5 13 6 4m s21),

(b) tropical storm (Usfc 5 18 6 4m s21), and (c) hurricane (Usfc 5
33 6 4ms21). Error bars are 95% confidence intervals on bin aver-

age; numbers are bin counts. Note that rain-rate bins are defined

separately for the operational and revised bias due to the extended

range of retrieved rain rates using the revised model (see Fig. 10).

2406 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 31



somewhat deficient at accurately measuring the surface

wind speed in weak wind speed conditions, especially

in heavy rain. Specifically, a significant high bias was

quantified within all conditions as well as within weak

wind speeds and heavy precipitation. The reason for this

overestimation of weak wind speeds has been determined

to be at least partly due tomisrepresentation ofmicrowave

absorption by rain. To address this issue, a revised set of

GMF coefficients for both the rain absorption and wind-

induced surface emissivity models has been determined.

An evaluation of revised SFMR wind speed retrievals

indicates that the bias is significantly reduced at wind

speeds less than hurricane force (Usfc , 33m s21), and

little difference is found at higher wind speeds where no

significant bias initially existed. Additionally, SFMR-

retrieved rain rates are more consistent with other

instrument-derived rain-rate values. In cases where maxi-

mum rain rates in hurricanes did not exceed ;60mmh21

with the currently operational version, the highest re-

ported rain rates may now be as high as ;90mmh21.

The proposed SFMR algorithm modifications are

summarized as follows:

d Sea surface emissivity: The wind-induced excess emis-

sivity at the 4.74-GHz channel is computed from Eq.

(5) using the coefficients in Table 2. The excess

emissivity for the additional channels are computed

by applying the small frequency dependence from Eq.

(6), multiplied by the frequency difference Df 5 f 2
4.74GHz. Finally, the total surface emissivity is com-

puted by Eq. (7) by adding the specular emissivity

computed by the Klein and Swift (1977) algorithm.
d Rain column depth: As an improvement to simply

assuming a constant height for the freezing level

(4km), the freezing level is computed from the observed

flight-level temperature and altitude using Eq. (8).
d Rain absorption coefficient: The absorption coefficient

is computed using previous methodology but uses the

set of modified coefficients given in Table 3.

Although the surface wind speed overestimation by

SFMR has evidently been significantly reduced in heavy

rain using the revised model, a smaller high bias remains

at the weakest wind speeds of tropical storm force and

lower. The reasons for this bias are currently not clear, but

further study is planned. Accordingly, the authors rec-

ommend applying a real-time bias adjustment based on

the results depicted in Fig. 14, such that reported surface

wind measurements are the statistically corrected values.
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